
Operators, Arithmetic, and
Methods

Operators
In javascript you can use the following operators.

+ Addition

- Subtraction

* Multiplication

/ Division

++ Increment

-- Decrement

Addition

Addition is used by the + symbol in your code

When adding number data types together it will perform normal addition

When adding string data types together it will combine the strings

var x = 3; var x = “3”;

var y = 2; var y = “2”;

console.log(x + y); console.log(x + y);

Output: 5 Output: “32”

Lets try it

var x = 3;

var y = 2;

console.log(x + y);

Output: 3

Subtraction

Subtraction is used by the - symbol in your code

When subtracting number data types together it will perform normal subtraction

If you subtract 2 strings your javascript will attempt to convert the strings to numbers and if it cannot it will error
as NaN (Not a number)

var x = 3;

var y = 2;

console.log(x - y);

Output: 3

Multiplication

Multiplication is used by the * symbol in your code

When multiplying number data types together it will perform normal multiplication

If you multiply 2 strings your javascript will attempt to convert the strings to numbers and if it cannot it
will error as NaN (Not a number)

var x = 3;

var y = 2;

console.log(x * y);

Output: 6

Division

Division is used by the / symbol in your code

When dividing number data types together it will perform normal division

If you divide 2 strings your javascript will attempt to convert the strings to numbers and if it cannot it will
error as NaN (Not a number)

var x = 6;

var y = 2;

console.log(x / y);

Output: 3

Lets try it

var x = 6;

var y = 2;

console.log(x - y);

console.log(x * y);

console.log(x / y);

What about multiple operators (Arithmetic) in a line
of code?
Javascript will follow the order of operations when there are multiple operators in a line of code.

var x = 2;

var y = 3;

var z = 4;

console.log(x + y * z); //Based on order of operations y * z will come first and then x will be added

Output: 14

Don't forget the parentheses!!

Just like with normal order of operations you can use parentheses

var x = 2;

var y = 3;

var z = 4;

console.log((x + y) * z); //Based on order of operations x + y will come first and then z will be multiplied

Output: 20

Lets try it

var x = 2;

var y = 3;

var z = 4;

console.log((x + y) * z); //Based on order of operations x + y will come first and then z will be multiplied

Output: 20

Increment

Increment is used by the ++ symbols in your code

Increment adds 1 to the number

var x = 6;

x++;

console.log(x);

Output: 7

Decrement

Decrement is used by the – symbols in your code

Decrement subtracts 1 from the number

var x = 6;

x- -;

console.log(x);

Output: 5

What's the point of this ++ and - -??

Incrementing and Decrementing will become very important when we start learning about loops

Lets try it

var x = 6;

x++;

console.log(x);

Output: 7

var x = 6;

x- -;

console.log(x);

Output: 5

Functions

We have already learned about Functions when we used onClick with buttons but Functions can do more!

A few topics we’ll review on functions:

Passing variables into a function

Ending a function early

Returning a value from a function

Why use Functions?

Functions help reduce redundant code

Functions help organize code

Function help break large pages of code into easier to understand blocks

Review of how to declare a function

function NAMEYOUASSIGN(){

CODE

}

How to call a function in Javascript

You can call a function from Javascript

sendAlert();

function sendAlert(){

alert(“Hello”);

}

Lets try it

sendAlert();

function sendAlert(){

alert(“Hello”);

}

Passing a variable in a function

You can pass variables in a function and then use that variable in your function

sendAlert(“hello”);

function sendAlert(x){

alert(x);

}

Lets try it

sendAlert(“hello”);

function sendAlert(x){

alert(x);

}

Ending a function early

You can end a function by using the return keyword. Anything below this line will not be executed.

sendAlert(“hello”);

function sendAlert(x){

return;

alert(x);

}

Lets try it

sendAlert(“hello”);

function sendAlert(x){

return;

alert(x);

}

Returning a value from a function

Like passing variables into a function you can also return a value from your function to do this use the return
keyword we just learned

To get the return value make sure you assign it to a variable

var x = getMessage();

function getMessage(){

return “Hello”;

}

Lets try it

var x = getMessage();

function getMessage(){

return “Hello”;

}

